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Abstract.Thescreeningofaone-dimensionalpotentialreliefbya2~elenrongasandplasma 
oscillations is investigated for the case of cosine-like extemal potentials. "he analytical 
solution of the screening problem provides an opportunity for the development of qualified 
numerical procedures for linear oscillations within the framework of the hydrodynamical 
model. A simple analytical expression is obtained for the frequency of a zero-wave vector 
plasmon as a function of electron concentration and potential amplitude. A strong frequency 
drop at the critical point of concentration between linear and nan-linear screening regimes, 
which was observed experimentally, is explained. In the vicinity of the critical concentration 
the asymptotical expressions are derived, which hold for any smooth periodical potential. 

1. Introduction 

In recent years experiments have been developed extensively on two-dimensional sys- 
tems with artificial periodicity in one direction [l-51. The potential relief in the plane of 
the ZD electron channel in MOS devices or heterostructures is produced by a specially 
shaped electrode or by photoionized impurities. The present work was stimulated by far 
infrared absorption (FIR) experiments [4,5], in which the zero-wave vector odd modes 
of plasma oscillations with non-zero spatially averaged current density are observed. 
The dependence of resonant frequencies on the averaged areal density E in the device 
was investigated, and the most specific feature was found in a sharp frequency drop at 
some value of E. This value did not depend on the transverse magnetic field also present 
in the experiment and was considered to be the critical concentration, below which the 
redistribution of electron density fails to screen the external potential completely and 
the modulated continuous charge distribution is transformed into a periodic array of 
isolated stripes. 

This transition and its effect on the plasma resonance spectrum is the subject of the 
present work. The period and amplitude of the external potential in the experiment 
were usually 100 nm and 1 eV, respectively. One may, therefore, assume that the 
quantum effects are negligible. The approximations and method of calculation do not 
greatly differ from those used in [MI, where the dispersion law of plasmons (mainly 
along the stripes) for different profilesofequilibrium electron concentration was studied. 
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In the present work the cosine-like external potential isconsidered, for which, asisshown 
below, the analytical expression for equilibrium distribution and plasma resonance 
frequencies at zero-wave vector along the plane in the whole range of concentration can 
be obtained. The screening effect of a gate electrode in real devices is not taken into 
account. 

2. General considerations 

The external potential U(x) is assumed to depend only on one of the coordinates along 
the plane, so the equilibrium distribution of electron density no(x) and electrostatic 
potential qo(x ,  z )  are determined through the 20 Poisson equation 

(eiselectroncharge, ~i~die1ectricconstant)andtheconstancyofthepotentialcombined 
with the external potential U ( x )  is 

' p o ( x ,  0) i U(x)  = constant. (2) 

The latter condition must hold over the whole plane if the concentration does not vanish 
anywhere. In this case ideal screening of the external potential takes place. In the 
opposite case the electron concentration is insufficient for complete screening, so the 
equipotentiality (2) takes place only within the 'metal' regions of the plane with the 
positive electron concentration no > 0. In the remaining 'dielectric' regions with the 
absence of electrons, the full potential exceeds its level in metal regions. Thus the non- 
linear screening problem (see [9]) appears in a ZD variant. A very similar problem was 
treated in the theory of the charged surface of liquid helium and in [lo], but the present 
case is much simpler due to the ID nature of the external potential. The note by Shikin 
1111 is also of some interest. 

In order to describe the small plasma oscillations, which generally differ in symmetry 
from the equilibrium distribution, one needs the equations of the oscillating part of 
electron density n ( x ,  y) e-'"'and electrostatic potential q ( x ,  y ,  z )  e-'"'. The first of these 
equations is the 3 0  (in contrast with (1)) Poisson equation 

+ - + - ( x , y ,  z )  = - 4 m e - ' n ( x , y ) 8 ( z ) .  (3 a 2  ay2 a 2  a r2  a 2 )  9, (3) 

The second equation 

iwn(x, Y) = Vl6(x)V~(x.y,O)I (4) 
is the kinetic one and follows from the continuity equation combined with Ohm's law 
j = &E. The ZD conductivity tensor (7. has the form 

(The cyclotron frequency o, = eH/mc equals zero in the absence of the magnetic field 
H . )  Naturally, equation (4) has sense only within the 'metal' regions, where no(x) and 
n(x ,  p) exist. Equations (1-5) give the full description of the equilibrium state and the 
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small oscillations of an electron gas with ID inhomogeneity under the classical cold 
plasma approximation (the hydrodynamical model). 

If the solution of the equilibrium part of the problem has already been found, the 
direct way to find the spectrum of plasma oscillations is to expand n and e, in the 
orthogonal bases Nk and ak with elements satisfying painvise (at every value of index 
k) the Poisson equation (3) 

9 1 ( x , y , z ) = r , i l r , a k ( x , y , r )  f l ( x , Y ) = ~ ~ k N t ( x , Y ) ,  
k k 

When using this expansion, the determination of the w spectrum is reduced to the 
generalized eigenvalue problem 

(WZ - w:)Aq = B(w)qv (6) 
with symmetric matrix components 

A k k r  @ x ( x ,  Y 3 O)N!d ( x ,  Y )  
(7) 

Bke = -ie-'(wz - W z ) O - '  (v@:)&(v@k,) dr. I 
3. Specification of the problem 

The following consideration deals mostly with the cosine-like profile of the external 
potential energy 

U@) = - U0 COS( Qx) 

which simplifies the problem dramatically and has at least qualitative hearing on the real 
experimental situation. The most remarkable feature of this kind of potential is that the 
problem of screening can be solved analytically over the whole range of concentrations. 
For example, in the case of high concentration the equilibrium solution is trivial 

no(.) = ii + (UoQc/2ne2) cos(x). (8) 
The border of the ideal screening regime corresponds to vanishing of no(x) at the maxima 
ofthe potential U(x).  For thecaseconsidered thisgives thecritical value ofconcentration 

ii = nE = lJoQE/2ne2. 

It is convenient to rewrite equations (1)-(5) in a dimensionless form taking U. as the 
unit for potential energy, n, as the unit for concentration, and Q-' as a unit for length. 
The optimal unit for frequency is found to he the frequency wp = (2nezn,Q/ma)1/2 of a 
plasmon with wavevector Q in a homogeneouselectrongasofconcentrationn,. Another 
simplification of the equations is possible by restricting the treatment to the case of a 
plasmon wavevector directed along the x axis. These modes are uniform in the y 
direction, so that n(x, y )  and ~ ( x ,  y, z) can be regarded asindependentofy. The general 
case is not much more complicated, but of principal interest here are modes with zero 
wave vector, so we only consider the case qy = 0 below, and the coordinate y is omitted 
in the formulae. 
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Thus the system of equations to be solved takes the form 

qo(x,  z) - cos(x) = constant 

for x where no@) > 0, 

and the matricesA and B enteringthe eigenvalue problem (6) for calculation of resonant 
frequencies have components 

A W  = r" @ K ( x ,  0 ) N d x )  &, 
-I-n 

Since B is independent of w ,  the equation (6) is equivalent to the diagonalization of an 
asymmetric matrix A-'B. The diagonalization of the matrix is a standard problem of 
numerical methods and can be solved very precisely (the matrix must of course he 
truncated at sufficiently high indices). 

The important point is that as it follows from the equation (6) that the magnetic field 
enters the mathematical part of the problem in a trivial way, and so does not require 
specialconsideration, soonly thecase w, = Owill be discussed below. This simplification 
is only justified when dealing with plasmon dispersion along they direction. 

4. Ideal screening 

In this region of average concentration E, described by the condition E > 1, the equi- 
librium solution is given by equation (8) and has the dimensionless form 

n&) = E + cos(x). (14) 
One can hardly invent anything better than the usual Fourier expansion used in [MI 
for the oscillating parts of the potential and concentration 

Q k ( x ,  z) = exp(ikx + iq,x + iq,y - 1k.I) 

A'&) = [ ( k  - ~ q r ) 2  + q : ] I n  exp(ikx + iq,x + iq,y) (15) 

where k is an integer index and q is an arbitrary directed ZD wave vector. 
In l i e  with the assumptions adopted in deriving the equations (9-12). only the 

plasmon dispersion law transverse Jo stripes w2(qx) will be studied. When setting qv = 
0, the basis (15) gives for matrices A and B the expressions 

AM' = I k + q r P k k  

BW I(k + qx)(k' + qx)I(Eakw + 16xit.x,). 
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Flgure 1. Dispersion curves 02(qx) for dimen- 
sionless density A =  1.5. The unit (3 - 1)'D for 
o2 is chosen to demonstrate the simple rule for 
the resonant frequencies at q = 0. 

Figure 2. The resonance position at p = 0 as a 
function of dimensionless density A. Modes are 
numerated in the ascending order of frequency 
(takingintoconsideration thedoublingat A > 1). 
The parityof the numbercorrespondstothe mode 
parity. 

As an example, the dispersion curves d(q,) for ii = 1.5 are shown in figure 1. The first 
point demonstrated by this figure is the absence of gaps in a plasmon spectrum at zero- 
wave vector point. It should be emphasized that this degeneracy is not trivial and takes 
place only for the sinusoidal external potential. Secondly, one peculiar mode exists 
whose frequency goes to zero at q = 0. This mode is of Goldstonian origin and cor- 
responds to spatially uniform constant current. It is odd in terms of the electron density 
distribution and manifests itself in the FIR experiments as a cyclotron resonance (in the 
presence of the magnetic field). 

Note that the results of the work [8] considering in detail the cosine-like potential 
with E > 1 are suspicious. They do not contain any trace of degeneracy at q = 0 and give 
very strange dispersion curves w2(q,) with extrema in an intermediate region of qz 
(between qz = 0 and qx = *.U. Such a discrepancy can hardly be treated in any positive 
sense and appears to come from numerical mistakes in [8]. 

For the modes with zero wave vector q,  which are the main object of the present 
consideration, the full basis ( 1 5 )  is not the optimal one from the numerical accuracy 
pointofview. In thiscasethesymmetryoftheequationsinvitesustoclassify thesolutions 
by the parity of charge distribution and use two alternative bases: the even 
Q h ( x ,  z )  = cos(kr) exp( -k lz  I) 
and the odd 

Both bases result in the same pair of matrices A and 6 

Nh(x)  = kcos(kx) (k = 1 , 2 , .  . .) 

Q k ( x , z )  = sin(kx)exp(-klz/) Nh(x)  = k sin(kx) ( k = 1 , 2 ,  ...). 

Ahk. = (k/2)6khs 
BW = (iik2/2)6kkv + (kk'/4)6kti,k, 

in agreement with the dispersion law degeneracy noted above. 
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The diagonalization of matrix A-’B gives a rather curious result for the case q = 0: 
within theaccuracyofcalculation(betterthanfivedigitsfor1~ - 11 > 0.01) thespectrum 
is ideally described by a simple analytical formula 

09 = Z($ - 1)*/2 (16) 
where 2 = 0,1,2,  . . .for odd modes and Z = 1,2,3, , . I for even ones. 

5. Non-linear sereening 

This area of consideration is somewhat more involved, so only the case qr = 0, qv = 0 is 
considered here. The basic ideas are taken from the conformal transformations 
technique, which is a well known and very powerful tool in 2~ electrostatics problems. 
The complex variable 6 = x + iz is introduced, and the main point is to construct a 
suitable full set of functions of this variable, analytic outside the cuts, corresponding to 
the ‘metal’ regions. For any such function, its real and imaginary parts will both give 
some solution of the Laplace equation outside the cuts. and give the corresponding 
charge distribution along the cuts through the boundary conditions. 

For the particular problem considered hereone needs the periodicsolutions @ ( x ,  z ) .  
As is usual in the conformal transformations technique, the solution is found by guess- 
work rather than by regular methods, so it is only worthwhile to present the result, 
which can be checked if necessary. The appropriate full set of functions for solving the 
equilibrium problem and the expansion of oscillating perturbations consists of two 
subsets of different parity. The even one is 

@ , ( x ,  I) = ReUln{~[sin(5/2)/sin(d/2)]]a 

Q K ( x ,  I) = ReU{F[sin(5/2)/~in(d/2)]]~~-~ 1 k = 2,3, .  . , (17a) 

where F(g) = E - (e - 1)1/2 (obviously the logarithm corresponds to the zero power). 
The odd subset is constructed in a similar manner 

QDa(x,  z )  = Re~cos(~/2){F[sin(~/2)/sin(d/2)]}”-’B k =  1,2, .  . . . (176) 

The functions (17) have the required periodicity with x ,  tend to zero at 111 -+ m, and 
havecutsalongtheintervals~x - 23E.ml s d,r = 0. Aspointedoutabove, themainpoint 
is that they are the real parts of analytical functions, and hence satisfy the Laplace 
equation outside the cuts. Thus, each of the subsets may be used as a basis for the 
expansion of the potential. The corresponding bases for the concentration are derived 
from (17) through the boundary condition 

The equilibrium distribution is composed of a combination of the even subset‘s 
elements @&, z )  and m2(x,  z )  with the corresponding concentrations 

NI(x) = 1 cos(x/2)/[sinz(d/2) - sin2(x/2)]’” 

cos(x/2) 2 sin2(x/2) - sinz(d/2) 
N 2 ( X )  = sin2(d/2) [sin2(d/2) - sin2(x/2)]’fl ’ 
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The potential Q1(x, 0) is zero along the interval -d < x < d, so the amplitude of the 
second harmonic 

a2(x, 0) = [2sin2(x/2) - sinz(d/2)]/siuz(d/2) 

is determined immediately by the amplitude of the external potential, and equals 
-2zsinz(d/2). In turn, the harmonic Nz(x)  does not contribute to the average con- 
centration, so the value 4nri follows for the amplitude of harmonic Nl(x). The size d of 
‘metal‘ regionsisked by the condition ofvanishing electric field tangentialcomponents 
at theedgesof the regions (seee.g. [lo]), which takes, in the caseunder consideration, the 
form, sinz(d/2) = ri. Thus the equilibrium distribution of the concentration is obtained 

no(x)  = Z C O S ( X / ~ ) [ ~ ~  - sinZ(x/2)]@ 

no(x)  = 0 Isin(x/;?)I > 
The calculation of matrices A and B is based upon the fact that at the cats (i.e. in 

metal regions) the potentials (17) are expressed in terms of Chebyshev polynomials of 
the variable sin(x/2)/sin(d/2). The matrices A and 6 have components 

/sin(x/2)I < e’/’ 
(18) 

A& = k6kkt Bkp = (2 - ii)kz6kk, + (ri/2)kkr6k=1,kt 

in the odd case, and somewhat more complicated components 

A&*. = &(2 - q(2k  - 1)6kk’  - (ii,h)(kak+l,k, + k’6k,ke+i) 

B k k ,  = S[(2 - 7-E + rTz) + (8 - 86 + 3riz)k(k - l)]Skk, 

- [E(2 - E)/4](kZ6k+1,v + k’26w*+,)  
+ (riz/16)[k(k + 1)6k+2.p + k’(k’ + 1)6~.k’+z] 

in the even case. The result of the diagonalization matrix is just as remarkable as 
in region ri > 1: the resonance frequencies are exactly described by the simple formula 

m2 = Z(1 - iip (19) 
with 2 = 1,2,  . . . (no Goldstone mode). The even 2 corresponds to even modes, the 
odd 2 to odd modes. The relations (16) and (19) are plotted together in figure 2. 

6. Asymptotic solutions 

To obtain the expressions (16) and (19) in an ‘honest’ way, i.e. analytically, appears to 
be impossible. Only the asymptotic behaviour in various limiting cases can be studied 
analytically to confir? these results. Skipping the limits and ri- 0, in which the 
off-diagonal parts of A and B may be considered as small perturbations, let us proceed 
with the region 6 = 1. The analytical solution is of specific importance in this region 
because of the poor accuracy of the numerical calculations due to the ill-conditioned 
nature of matrix B. The asymptotic solution is based upon the assumption that the 
oscillating part of the concentration is localized near the extemal potential maxima 
(further consideration gives the scale Iri - 1 I1jz), where U(x) can be approximated by a 
parabola 

U(X) = -cos@) = 1 - x’/2 

x being reckoned from the maxima of U(x) .  
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For A = ii - 1 -+ +O the equilibrium distribution has, according to (14). the form 
no(x) = A + (x2/2). For the oscillating parts of the potential and the concentration, the 
solutions can be guessed 

q ( x , z )  = xl/{x’  + [(ZA)”’ + 1z1J2} 
(20) 

n(x)  = Z(ZA)~%/(ZA + 9) 
which satisfy equations (ll), (12) with o2 = (2A)’/’and describe the lowest non-Gold- 
stonian mode (3 in figure 2). 

For A - -0 the equilibrium distribution follows from (18) 

n o @ )  = x[(xZ/4) - A]@. 

(The width of the stripe free from electrons is 4A’/*.) The lowest mode (1 in figure 2) is 
described by the expressions 

and has the frequency wz = A’/*. 
The asymptotical dependences &(A) found here coincide with those given by the 

solutions (16) and (19) for the sinusoidal potential for /AI 4 1 for the lowest non-trivial 
modes. Note that both q(x)  and n(x) are functions of x in (20) and (21). Similarly, the 
solutions for all other modes can be constructed. 

7. Discussion 

It should be taken into account when comparing the results with experiments [4,5], that 
in the latter it is not the average concentration that is directly vaned, but a gate voltage. 
The voltage variation changes the external potential amplitude as well as ii, so the 
quantitative comparison is not too easy. The other complicating effect is the screening 
of Coulomb interactions by a gate electrode. Besides that, the real profile of potential 
relief is not sinusoidal and is usually closer to the smeared rectangular potential. 

Nevertheless, the qualitative agreement between the results obtained here and 
experiment is evident. In the region of low concentration only the lowest resonance is 
observed experimentally. For supercritical values of concentration only a lowest finite 
frequency mode (3 in figure 2) is observable without the magnetic field. When a trans- 
verse magnetic field is present the mode 1, corresponding to usual cyclotron resonance, 
appears (the higher visible resonances are difficult to treat). One should note that the 
magnetic field increase causes the upward shift of the picture of resonances U’($, as a 
whole, by w :  in agreement with equation (12). 

The most delicate matter is the measurement of the frequency drop at the critical 
value of n between the ideal and non-linear screening regimes. The calculations pre- 
sented above give the drop down to w = 0 by a square root law for U’($. According to 
section 5 this result is unambiguously general for any smooth periodic potential and is 
caused by the local decrease of plasmon frequency in the regions of low concentration. 
The considerably weaker drop found in the experiments may come from the macroscopic 
spatial inhomogeneity of the system, but the more credible source of this discrepancy is 
the neglect of dissipative processes in the hydrodynamic model used in the present work. 
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The importance of dissipation is emphasized by the rather large width of the FTR peaks 
in the critical region of E. 
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